Investigation of Holocene palaeo-hydrological changes using fluvial archives: A case study for Sakarya River terraces, NW Anatolia(Turkey)

Hilal Okur^{*†1,2}, Damase Mouralis³, Alper Gürbüz⁴, M. Korhan Erturaç^{1,2}, Özlem Makaroğlu⁵, Eren Şahiner⁶, Nesibe Köse⁷, Nurgül Karlıoğlu Kılıç⁷, Burçin Aşkım Gümüş⁸, and Bora Ön⁹

¹Sakarya University, Department of Geography – 54187 Serdivan, Sakarya, Turquie
²MALTA – Sakarya University Research, Development and Application Center (SARGEM), Turquie
³IDEES – Université de Rouen, CNRS : UMR6266 – 7 rue Thomas Becket, 76821 Mont-Saint-Aignan, France
⁴Department of Geological Engineering – Nigde, Ömer Halisdemir University, Turquie
⁵Department of Geophysical Engineering – Istanbul University, Turquie

 6 Institute of Nuclear Sciences – Ankara University, Turquie

⁷Faculty of Forestry – Istanbul University, Turquie

⁸Department of Biology – Gazi University, Turquie

⁹Department of Geological Engineering – Sıtkı Koçman University, Mugla, Turkey, Turquie

Résumé

Holocene climate changes of the NW Anatolia is well-resolved by means of high resolution speleothem (Sofular Cave) and sedimentary (İznik, Çubuk Lakes and Black Sea) records. The Sakarya River, the major fluvial system of the region, comprise 3 stepped depositional terrace staircases located just to the south of the North Anatolian Fault at the Adapazari Basin. These terraces provide sedimentary record from 9-1.8 ka (T2), 1.2-1 ka (T1) and 0.7 ka-recent (T0) evidenced by luminescence and radiocarbon dating.

The sections are fully exposed due to excessive sand-mining, and formed of fine grained flood plain deposits exhibiting a layered stratigraphy. Despite the hiatus(s), these deposits have a potential to record and reflect the hydrological changes at the Sakarya River throughout the Holocene.

We investigate how these records coincide with major historical shifts in Anatolia and wellknown Rapid Climate Change (RCC) events.

In order to construct an event stratigraphy, we detail the sections exposed at the terrace steps. In next future, we will map the changes in grain size, geochemistry, magnetic susceptibility, pollen presence and charcoal percent etc. These sections also include tree trunks buried within the bedload deposits and will be investigated by means of dendrochronology. It can also be supported by recent regional dendro-climatology data. By using this multiproxy approach, we aim to detect the rapid climate changes (such as 8.2 and 4.2 ka events) evidenced in regional paleo-climatic records, changes in solar activity and also the critical hydrological events (such as frequent flooding periods) for the region.

*Intervenant

 $^{^\}dagger {\rm Auteur\ correspondant:\ hilalokur@sakarya.edu.tr}$